因子分析详细步骤
KMO 和 Bartlett 的检验
使用因子分析进行信息浓缩研究,首先分析研究数据是否适合进行因子分析,从上表可以看出:KMO为0.876,大于0.6,满足因子分析的前提要求,意味着数据可用于因子分析研究。以及数据通过Bartlett 球形度检验(p<0.05),说明研究数据适合进行因子分析。
2.方差解释率表格
主要用于判断提取多少个因子合适。以及每个因子的方差解释率和累计方差解释率情况。方差解释率越大说明因子包含原数据信息的越多。因子分析中,主要关注旋转后的数据部分。
从上表可知:累积方差解释率值为78.213%,说明提取出来的4个因子可以提取出总共11项中78.213%的信息量,而且四个因子的方差解释率(信息提取量)分别为:21.407%,21.277%,20.807%和14.723%。信息提取量分布较为均匀,综合说明本次因子分析结果良好。
补充说明:如果研究人员并没有预设维度。而选择默认选项,SPSSAU默认以特征根大于1作为标准。当然因子分析通常需要综合自己的专业知识综合判断,即使是特征根值小于1,也一样可以提取因子。
3.旋转后因子载荷系数表格
从上表可知:所有研究项对应的共同度值均高于0.4,意味着研究项和因子之间有着较强的关联性,因子可以有效的提取出信息。最终对浓缩出来的四个因子进行分别命名为:A,B,C和D维度。
4.碎石图
同时可结合碎石图辅助判断因子提取个数。当折线由陡峭突然变得平稳时,陡峭到平稳对应的因子个数即为参考提取因子个数。实际研究中更多以专业知识,结合因子与研究项对应关系情况,综合权衡判断得出因子个数。
补充说明:因子计算权重
6.成份得分系数矩阵
7.载荷图
载荷图用于展示各因子与载荷值关系情况,建议结合实际情况使用即可。
第一:如果提取1个成分(或因子)时,则无法展示载荷成分图;
第二:如果超过个成分(或因子)时,可自主切换查看对应的载荷图。
其中X轴Y轴可以更改如下:
8.线性组合系数及权重结果
本文来自作者[本玉惠]投稿,不代表巨商报立场,如若转载,请注明出处:https://91zxpc.com/zx/2443.html
评论列表(3条)
我是巨商报的签约作者“本玉惠”
本文概览:因子分析详细步骤KMO 和 Bartlett 的检验使用因子分析进行信息浓缩研究,首先分析研究数据是否适合进行因子分析,从上表可以看出:KMO为0.876,大于0.6,满足因子...
文章不错《spss因子分析详细步骤》内容很有帮助